Features of The Proline Synthesis of Pea Seedlings in Depend of Salt and Hyperthermia Treatment Coupled with Ionizing Radiation

Main Article Content

Olena Nesterenko Namik Rashydov

Abstract

The proline is an important amino acid that takes part on live cell protection as well as adaptation processes to adverse environment stress factors. The effects of ionizing radiation coupled with salinity or hyperthermia stress factors on pea seedlings were investigated. Different growth reactions and free proline content in root of the Pisum sativum L. seedlings for all treatments were evaluated. The received results of growth parameters show that some doses of ionizing radiation assists to plants in resistance to salt and temperature stressors, however this resistance is short-term. Deviation of plants reactions from additive effect to synergism or antagonism that can represent crosstalk of signal system was observed This work proves that concentration of proline depends of stressors kind, their combinations and doses. The free proline level is a result of opposite processes of its synthesis and destruction, release and binding. The quantification of this amino acid is useful to assess the physiological status of signal systems crosstalk and more generally to understand stress tolerance of plants. 

Article Details

Section
Sending to International Journal of Secondary Metabolite
Author Biographies

Olena Nesterenko, Institute of Cell Biology and Genetic Engineering NASU

Laboratory Biophysics Signal Systems.

Department of Biophysics and Radiobiology

Namik Rashydov, Institute of Cell Biology and Genetic Engineering NASU

Laboratory Biophysics Signal Systems.

Department of Biophysics and Radiobiology

References

[1] Kourosh Vahdati and Naser Lotfi (2013) Abiotic Stress Tolerance in Plants with Emphasizing on Drought and Salinity Stresses in Walnut, Abiotic Stress - Plant Responses and Applications in Agriculture, (Eds.): Kourosh Vahdati, InTech, https://www.intechopen.com/books/abiotic-stress-plant-responses-and-applications-in-agriculture/abiotic-stress-tolerance-in-plants-with-emphasizing-on-drought-and-salinity-stresses-in-walnut.
[2] Rashydov N., Kliuchnikov O., Seniuk O., (2012) Radiobiological Characterization Environment Around Object "Shelter” In book: Nuclear Power Plant, (Eds.): Soon Heung Chang. Chapter 7: 231- 279. http://www.intechopen.com/profiles/25919/namik-rashydov
[3] Athar, H.R. and M. Ashraf (2009) Strategies for crop improvement against salt and water stress: An overview. In: Salinity and water stress: Improving crop efficiency. Tasks for Vegetation Sciences (Eds.): M. Ashraf, M. Ozturk and H.R. Athar. Springer-Verlag, The Netherlands, 44: 1-16.
[4] FAOSTAT (2011) (faostat.fao.org).
[5] Martins A.C. (2011) Change and Aging Senescence as an Adaptation, Plos One, 6(9): 1-12.
[6] Trindade L.S., Aigaki T., Peixoto A. (2013) A novel classification system for evolutionary aging theories, Front Genet, 4(25): 1-8.
[7] Mundy J., H. Bjоrn Nielsen, Brodersen Р. (2006) Crosstalk, Trends in Plant Science, 11(2): 63-64.
[8] Wei J, van Loon JJ, Gols R. (2014) Reciprocal crosstalk between jasmonate and salicylate defence-signalling pathways modulates plant volatile emission and herbivore host-selection behavior, Exp Bot., 65(12): 3289-3298.
[9] Fujita M, Fujita Y, Noutoshi Y. (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks, Curr Opin Plant Biol., 9(4): 436-442.
[10] Hurst A., Grams T., Ratajczak R. (2002) Effects of Salinity, High Irradiance, Ozone, and Ethylene on Mode of Photosynthesis, Oxidative Stress and Oxidative Damage in the C3/CAM Intermediate Plant Mesembryanthemum Crystallinum L., Plant Cell, 27: 187-197.
[11] Morgan M. J., Lehmann M., Schwarzlander M., Baxter Ch. J. Sienkiewicz-Porzucek A., Williams T. C.R., Schauer N., Fernie A. R., Fricker M. D. (2008) Decrease in manganese superoxide dismutase leads toreduced root growth and affects tricarboxylic acid cycle flux and mitochondrial redox homeostasis, Plant Physiology, 147: 101-114.
[12] Szabados L., Savoure A. (2009) Proline: a multifunctional amino acid, Trends Plant Sci., 15(2): 89-97.
[13] Carvalho K., Campos M.K., Domingues D.S., Pereira L.F., Vieira L.G. (2013) The accumulation of endogenous proline induces changes in gene expression of several antioxidant enzymes in leaves of transgenic Swingle citrumelo // Mol. Biol. Rep., 40: 3269-3279.
[14] Roberto Mattioli, Paolo Costantino and Maurizio Trovato (2009) Proline accumulation in plants: Not only stress. Plant Signaling and Behavior, 4(11): 1016-1018.
[15] Funck D., Winter G., Baumgarten L., Forlani G. (2012) Re-quirement of proline synthesis during Arabidopsis reproductive development, BMC Plant Biology, 12:1-12
[16] O. G. Nesterenko, N. M. Rashydov (2017) Evaluation of the correlation between proline and water content of the Pisum sativum L. roots under abiotic stress factors influence, Biological systems, 9(2): 192-196.
[17] Hossain Z, Nouri M.Z, Komatsu S. (2012) Plant cell organelle proteomics in response to abiotic stress. Proteome Res., 11(1): 37-48.
[18] Carillo P., Gibon Y. (2016) Extraction and determination of proline, ResearchGate. https://www.researchgate.net/publication/211353600.
[19] Чудинова Л. А., Суворов В. И. (2011) Роль некоторых низкомолекулярных соединений в механизме перекрестной адаптации растений, Вестник пермского университета (Биология), 1: 17-20.
[20] Stein H., Honig A., Miller G., Erster O., Eilenberg H., Csonka L.N. (2011) Elevation of free proline and proline-rich protein levels by simultaneous manipulations of proline biosynthesis and degradation in plants, Plant Sci.,181: 140–150.
[21] Battaglia M., Solorzano R.M., Hernandez M., Cuellar-Ortiz S., Garcia-Gomez B., Marquez J., Covarrubias A.A. (2007) Proline-rich cell wall proteins accumulate in growing regions and phloem tissue in response to water deficit in common bean seedlings, Planta, 225:1121–1133.
[22] Карташов А.В., Иванов Ю.В., Радюкина Н.Л., Шевякова Н.И., Кузнецов В.В. (2006) Активация некоторых защитных систем в растениях Thellungiella halophila при действии NaCl, Известия ПГПУ. Естественные науки, 1 (5): 57-61.
[23]. Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A. (2012) Role of proline under changing environments: a review, Plant Signal Behav.; 7(11): 1456–1466.
[24] Mattioli R., Costantino P., Trovato M. (2009) Proline accumulation in plants: not only stress, Plant Signal. Behav., 4: 1016-1018.
[25] N. I. Shevyakova, M. V. Shorina, V. Yu. Rakitin, and Vl. V. Kuznetsov (2006) Stress-Dependent Accumulation of Spermidine and Spermine in the Halophyte Mesembryanthemum crystallinum under Salinity Conditions, Russian Journal of Plant Physiology, 53(6): 739–745.
[26] Карпец Ю.В., Колупаев Ю.Е. (2009) Ответ растений на гипертермию: молекулярно-клеточные аспекты, Вісник Харківського національного аграрного університету. Серія Біологія, 1(16): 19–38.
[27] Михальская С.И., Матвеева А.Ю., Сергеева Л.Е., Кочетов А.В., Тищенко Е.Н. (2013) Исследование содержания свободного пролина в растениях кукурузы, трансформированных in-planta с использованием LBA4404, несущего pBi2E с двухцепочечным РНК-супрессором гена пролиндегидрогеназы, Известия Самарского научного центра Российской академии наук, 13(3): 1662-1665
[28] Данилина Л.И., Фролов Д.И. (2015) Оценка уровня загрязненности земель сельскохозяйственного назначения, Инновационная техника и технология, 3(4): 58-65.
[29] Кириллов А.Ф., Козьмик Р.А., Даскалюк А.П., Кузнецова Н.А., Харчук О.А. (2013) Оценка содержания пролина в растениях сои при воздействии засухи и засоления, Доклады по экологическому почвоведению, 1(18): 194-201.
[30] Вайнер А. А., Колупаев Ю. Е., Ястреб Т. О. (2013) Участие пероксида водорода в индуцировании накопления пролина в растениях проса при действии NaCl, Вісник Харківського національного аграрного університету (біологія), 2 (29): 32-38.
[31] Діденко Н. О., Волков Р. А., Панчук І. І. (2016) Вплив сольового сресу на вміст проліну та поліфенольних сполук у Arabidopsis thaliana, Біологічні системи, 8(1): 35-39.
[32] Сергєєва Л., Броннікова Л. (2016) Пролін-опосередковані реакції тютюну на дію засолення, Науковий вісник Східноєвропейського національного університету імені Лесі Українки (Ботаніка), 12: 15-19.
[33] Hasegawa P.M., Bressan R.A., Zhu J.-K., Bohnert H.J. (2000) Plant cellular and molecular responses to high salinity, Plant Physiol. Plant Mol. Biol., 51: 463–499.
[34] Sneha S., Rishi A. Chandra S. (2013) Effect of short term salt stress on chlorophyll content, protein and activities of catalase and ascorbate peroxidase enzymes in Pearl Millet, Am. J. Plant Physiol., 9(1): 32-37.
[35] Deinlein U., Stephan A.B., Horie T., Luo W., Xu G., Schroeder J.I. (2014) Plant salt-tolerance mechanisms, Trends Plant Sci., 19(6): 371-379.
[36] Falleh H., Jalleli I., Ksouri R., Boulaaba M., Guyot S., Magné C., Abdelly C. (2012) Effect of salt treatment on phenolic compounds and antioxidant activity of two Mesembryanthemum edule provenances, Plant Physiol. Biochem, 52: 1-8.
[37] Тажибаева Т.Л., Масимгазиева А.С. (2013) Свободный пролин как индикатор металлоустойчивости пшеницы, KazNu Bulletin. Ecology series, 2/2(38): 351-355.
[38] Liu J., Zhu J. K. (1997) Proline accumulation and salt-stress-induced gene expression in a salt-hypersensitive mutant of Arabidopsis, Plant Physiol., 114(2): 591-596.
[39] Kavi Kishor P.B., Sangam S., Amruhta R.N., Sri Laxmi P., Naidu K.R., Rao K.R.S.S. Rao Sreenath, Reddy K.J., Theriappan P., Sreenivasulu N. (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance, Current Science, 88 (3): 424–436.
[40] Kiyosue T., Yoshiba Y., Yamaguchi-Shinozaki K., Shinozaki K. (1996) A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis, Plant Cell., 8: 1323–1335.
[41] Колодяжная Я.С., Куцоконь Н.К., Левенко Б.А., Сютикова О.С., Рахметов Д.Б., Кочетов А.В. (2009) Трансгенные растения, толерантные к абиотическим стрессам. Цитология и генетика, 2: 72-93.
[42] Lenka Dvořáková, Fatima Cvrčková, Lukáš Fischer (2007) Analysis of the hybrid proline-rich protein families from seven plant species suggests rapid diversification of their sequences and expression patterns, BMC Genomics, 412: 1-16.
[43] Карпец Ю.В., Колупаев Ю.Е. (2009) Ответ растений на гипертермию: молекулярно-клеточные аспекты, Вісник Харківського національного аграрного університету. Серія Біологія, 1(16): 19–38.
[44] Садыгов С.Т., Акбулат М., Ахмедов В. (2002) Роль Са2+ в передаче стрессовых сигналов у проростков пше ницы, Биохимия, 67(4): 587–594.
[45] Hare P.D., Cress W.A. (2003) Metabolic implications of stress-induced proline accumulation in plants, Plant growth regulation, 21(2): 79–102.
[46] Кравец Е.А., Бережная В.В., Сакада В.И., Рашидов Н.М., Гродзинский Д.М. (2012) Структурная архитектоника апикальной меристемы корня в связи с количественной оценкой степени ее радиационного поражения, Цитология и генетика, 2: 12-23.
[47] Франко О.Л., Мело Ф.Р. (2000) Осмопротекторы: ответ растений на осмотический стресс, Физиология растений, 47(1): 152-159.
[48] Нестеренко О., Гродзинский Д., Рашидов Н., Ланчикова В. (2015) Взаимодействие солевого и гипертермического стрессовых факторов с ионизирующим излучением у проростков гороха. Agrobiodiversity for improving nutrition, health and life quality, Nitra: Slovak University of Agriculture: 511-514.
[49] Гаджиева И.Х., Алиева З.М., Рамазанова П.Б (2010) Кросс-адаптация растений к почвенному засолению и тяжелым металлам, Экология растений. Юг России: экология, развитие, 1: 26-32.