DPPH, FRAP, CUPRAC, ABTS Antioxidant Activities, HPLC Phenolic Analysis and Electronic Nose Nebulvapor Contents Diagnosis of Black Garlic Antioxidant, Phenolic and Volatile Analysis of Black Garlic

Main Article Content

Ozan Emre Eyupoğlu http://orcid.org/0000-0002-4449-0537


Black garlic is a processed garlic product with a moisture-controlled high temperature heat treatment for a long time. In order to determine the secondary metabolites of black garlics treated in the study, firstly, in vitro antioxidant activities of black garlics purchased from the Turkish plant market were determined, followed by qualitative and quantitative measurement of the phenolic compound content by HPLC and finally the electronic nose analysis of the content of nebulizer vapors in wood vinegar extract of black garlics were done successfully. Chlorogenic acid, vanillic acid, benzoic acid, gallic acid contents in detected 13 phenolic acids were quitely high. All quantitative results were expressed as mg gallic acid equivalent (GAE) per g dry matter of black garlic sample. ABTS and DPPH antioxidant activities were very low according to BHT standart and 2-Methylene-4-pentenal (18%) and Furfural (25%) were detected in high amount with electronic nose in nebulvapor contents of black garlic wood vinegar extract.

Article Details

Sending to International Journal of Secondary Metabolite
Author Biography

Ozan Emre Eyupoğlu, Istanbul Medipol University

Ozan Emre EYUPOĞLU, Assist. Prof. Dr. Istanbul Medipol University  School of Pharmacy, Basic Science of Pharmacy, Head of Biochemistry department


[1]. Lu, X., Li, N., Qiao, X., Qiu, Z., and Liu, P. (2017). Composition analysis and antioxidant properties of black garlic extract. J. Food Drug Anal. 25, 340–349, doi: 10.1016/j.jfda.2016.05.011.
[2]. Sun, Y. E., and Wang, W. (2018). Changes in nutritional and bio-functional compounds and antioxidant capacity during black garlic processing. J. Food Sci. Technol. 55, 479–488, doi: 10.1007/s13197-017-2956-2.
[3]. Dong, M., Yang, G., Liu, H., Liu, X., Lin, S., Sun, D., et al. (2014). Aged blackgarlic extract inhibits ht29 colon cancer cell growth via the pi3k/akt signaling pathway. Biomed. Rep. 2, 250–254, doi: 10.3892/br.2014.226.
[4]. Czompa, A., Szoke, K., Prokisch, J., Gyongyosi, A., Bak, I., Balla, G., et al. (2018). Aged (black) versus raw garlic against ischemia/reperfusion-induced cardiac complications. Int. J. Mol. Sci. 19 (4), 1017, doi: 10.3390/ijms19041017.
[5]. Kimura, S., Tung, Y. C., Pan, M. H., Su, N. S., Lai, Y. J., & Cheng, K. C. (2017). Black garlic: A critical review of its production, bioactivity, and application. J. Food Drug Anal., 25, 62–70.
[6]. Queiroz, Y.S, Ishimoto, E.Y, Bastos, D.H.M, Sampaio, G.R, Torres, E.A.F.S. (2009). Garlic (Allium sativum L.) and ready-to-eat garlic products: in vitro antioxidant activity. Food Chem., 115, 371-374.
[7]. Choi, I.S, Cha, H.S, Lee, Y.S. (2014). Physicochemical and antioxidant properties of black garlic. Molecules, 19, 16811-16823.
[8]. Seo, Y.J, Gweon, O.C., Im, J., Lee, Y.M., Kang, M.J., Kim, J.I. (2009). Effect of garlic and aged black garlic on hyperglycemia and dyslipidemia in animal model of type 2 diabetes mellitus. J Food Sci Nutr, 14, 1-7.
[9]. Yuan, H., Sun, L., Chen, M., Wang, J. (2016). The comparison of the contents of sugar, Amadori, and Heyns compounds in fresh and black garlic. J Food Sci, 81(7), C1662-C1668.
[10]. Molina-Calle, M., Priego-Capote, F., & Luque de Castro, M. D. (2016). HS-GC/MS volatile profile of different varieties of garlic and their behavior under heating. Anal Bioanal Chem, 408 (14), 3843–3852, doi:10.1007/s00216-016-9477-0.
[11]. Amagase, H., et al. (2001). Intake of garlic and its bioactive components. The Journal of Nutrition, 131, 955S–962S.
[12]. Zhang, R.F., Zhang, F.X., Zhang, M.W., Wei, Z.C., Yang, C.Y., Zhang, Y. (2011). Phenolic composition and antioxidant activity in seed coats of 60 Chinese black soybean (Glycine max L. Merr.) varieties. J. Agric. Food Chem., 59, 5935–5944.
[13]. Benzie, I.F.F., and Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem., 239, 70-76.

[14]. Ozyurek, M., Guclu, K., Apak, R. (2011). The main and modified CUPRAC methods of antioxidant measurement. Trends Anal. Chem., 30 (4), 652-664, doi:10.1016/j.trac.2010.11.016.
[15]. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med., 26 (9–10), 1231-1237.

[16]. Aliyazicioglu, R., Eyupoglu, O.E., Sahin, H., Yildiz, O., Baltas, N. (2013). Phenolic components, antioxidant activity, and mineral analysis of Capparis spinosa L. Afr. J. Biotechnol., 12(47), 6643-6649, doi: 10.5897/AJB2013.13241.

[17]. Nimmano, N., Somavarapu, S., Taylor, K.M.G. (2018). Aerosol characterisation of nebulised liposomes co-loaded with erlotinib and genistein using an abbreviated cascade impactor method. Int J Pharmaceut., 542(1-2), 8–17, doi:10.1016/j.ijpharm.2018.02.035.
[18]. Rock, F., Barsan, N., Weimar, U. (2008). Electronic Nose: Current Status and Future Trends. Chem Rev., 108(2), 705–725, doi:10.1021/cr068121q.
[19]. Kim, J.S, Kang, O.J, Gweon, O.C. (2013). Comparison of phenolic acids and flavonoids in black garlic at different thermal processing steps. J Funct Foods, 51, 80-86.
[20]. Wang, W., Sun, Y. (2016). In vitro and in vivo antioxidant activities of polyphenol extracted from black garlic. Food Sci Technol., 37(4), 681-685, doi:10.1590/1678-457X.30816.
[21]. Molina-Calle, M., Priego-Capote, F., Luque de Castro, M.D. (2017). Headspace GC-MS volatile profile of black garlic vs fresh garlic: Evolution along fermentation and behavior under heating, Food Sci Technol., 80, 98-105, doi:10.1016/j.lwt.2017.02.010.
[22]. Gorinstein, S., Leontowicz, H., Leontowicz, M., Namiesnik, J., Najman, K., Drzewiecki J., et al. (2008). Comparison of the Main Bioactive Compounds and Antioxidant Activities in Garlic and White and Red Onions after Treatment Protocols. J. Agric. Food Chem., 56 (12), 4418-4426, doi:10.1021/jf800038h.
[23]. Tamaki, K., Sonoki, S., Tamaki, T., & Ehara, K. (2008). Measurement of odour after in vitro or in vivo ingestion of raw or heated garlic, using electronic nose, gas chromatography and sensory analysis. Int J Food Sci Technol., 43, 130–139, doi:10.1111/j.1365 2621.2006.01403.x.