Effects of Methyl Jasmonate and Putrescine on Tryptanthrin and Indirubin Production in in vitro Cultures of Isatis demiriziana Mısırdalı in-vitro Cultures of Isatis demiriziana Mısırdalı

Main Article Content

Özgür Karakaş


Tryptantrin and indirubin are pharmacologically active compounds used in treatment of disseases such as cancer and Alzheimer's. In this study, we investigated the influences of different concentrations of methyl jasmonate (MeJa) and putrescine (Put) on tryptanthrin and indirubin production in leaf explants and development of Isatis demiriziana Mısırdalı grown in vitro. In all media treated with methyl jasmonate, tryptanthrin production in leaves of plantlets showed an increase. The highest increase in tryptanthrin production was observed in solid Murashige-Skoog (MS) medium containing 1.0 mM MeJa (154.026 ± 0.11 µg g-1), about 2.85-fold higher than the control (untreated plantlets) (40.017 ± 0.031 µg g-1). Production of tryptanthrin decreased about 2.56-fold in the leaves of plantlets treated with Put, when compared to control. The highest indirubin production was obtained in the leaves of plantlets grown in the MS medium containing 0.1 mM MeJa (11.274 ± 0.035 µg g-1) but treatments with Put didn’t show any positive affect on the indirubin production. Analysis of tryptanthrin and indirubin were performed using high performance liquid chromatography (HPLC).

Article Details

Sending to International Journal of Secondary Metabolite


[1]. Mısırdalı, H. (1985). Taxonomic and cytological investigations on the species of Isatis L., grown in the Eastern and South Eastern Anatolia and over the regions of Eastern Mediterranean. (TUBITAK Project No: TBAG-535, Eskisehir, Turkey).

[2]. Maugard, T., Enaud, E., Choisy, P., Legoy, M.D. (2001). Identification of an indigo precursor from leaves of Isatis tinctoria (woad), Phytochemistry. 58(6), 897-904. DOI: 10.1016/S0031-9422(01)00335-1.

[3]. Angelini, L.G., Tozzi, S., Nassi, N. (2007). Differences in leaf yield and indigo precursors production in woad (Isatis tinctoria L.) and Chinese woad (Isatis indigotica Fort.) genotypes. Field Crops Research, 101 (3), 285–295. DOI: 10.1016/j.fcr.2006.12.004.

[4]. Zou, P., Koh, H.L. (2007). Determination of indican, isatin, indirubin and indigotin in Isatis indigotica by liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Communication in Mass Spectrometry, 21(7), 1239-1246. DOI: 10.1002/rcm.2954.

[5]. Mohn, T., Suter, K., Hamburger, M. (2008). Seasonal changes and effect of harvest on glucosinolates in Isatis leaves. Planta Medica, 74 (5), 582-587. DOI: 10.1055/s-2008-1074504.

[6]. Honda, G., Tosirisuk, V., Tabata, M. (1980). Isolation of an antidermatophytic, tryptanthrin, from indigo plants, Polygonum tinctorium and Isatis tinctoria. Planta Medica, 38 (3), 275-276. DOI: 10.1055/s-2008-1074877.

[7]. Mohn, T., Plitzko, I., Hamburger, M. (2009). A comprehensive metabolite profiling of Isatis tinctoria leaf extracts. Phytochemistry 70 (7), 924 934. DOI: 10.1016/j.phytochem.2009.04.019.

[8]. Tucker, A.M., Grundt, P. (2012). The chemistry of tryptanthrin and its derivatives. Arkivoc, 2012 (1), 546-569. DOI: 10.3998/ark.5550190.0013.113.

[9]. Koya-Miyata, S., Kimoto, T., Micallef, M.J., Hino, K., Taniguchi, M., Ushio, S., Iwaki, K., Ikeda, M., Kurimoto, M. (2001). Prevention of azoxymethane-induced intestinal tumors by a crude ethyl acetate-extract and tryptanthrin extracted from Polygonum tinctorium Lour. Anticancer Research, 21 (5), 3295-3300.

[10]. Yang, S., Li, X., Hu, F., Li, Y., Yang, Y., Yan, J., Kuang, C., Yang, Q. (2013). Discovery of tryptanthrin derivatives as potent inhibitors of indoleamine 2,3-dioxygenase with therapeutic activity in Lewis Lung Cancer (LLC) tumor-bearing mice. Journal of Medicinal Chemistry, 56 (21), 8321-8331. DOI: 10.1021/jm401195n.

[11]. Ishihara, T., Kohno, K., Ushio, S., Iwaki, K., Ikeda, M., Kurimoto, M. (2000). Tryptanthrin inhibits nitric oxide and prostaglandin E2 synthesis by murine macrophages. European Journal of Pharmacology, 407 (1-2),197-204. DOI: 10.1016/S0014-2999(00)00674-9.

[12]. Honda, G., Tabata, M., Tsuda, M. (1979). The antimicrobial specificity of tryptanthrin. Planta Medica, 37(2), 172-174. DOI: 10.1055/s-0028-1097320.

[13]. Krivogorsky, B., Grundt, P., Yolken, R., Jones-Brando, L. (2008). Inhibition of Toxoplasma gondii by indirubin and tryptanthrin analogs. Antimicrobial Agents Chemotherapy, 52(12), 4466-4469. DOI: 10.1128/AAC.00903-08.

[14]. Hoessel, R., Leclerc, S., Endicott, J.A., Nobel, M.E., Lawrie, A., Tunnah, P., Leost, M., Damiens, E., Marie, D., Marko, D., Niederberger, E., Tang, W., Eisenbrand, G., Meijer, L. (1999). Indirubin, the active constituent of a Chinese antileukaemia medicine, inhibits cyclin-dependent kinases. Nature Cell Biology, 1(1), 60-67. DOI: 10.1038/9035.

[15]. Nam, S., Scuto, A., Yang, F., Chen, W., Park, S., Hwa-Seung, Y., Konig, H., Bhatia, R., Cheng, X., Merz, K.H., Eisenbrand, G, Jove, R. (2012). Indirubin derivatives induce apoptosis of chronic myelogenous leukemia cells involving inhibition of Stat5 signaling. Molecular oncology, 6(3), 276-283. DOI: 10.1016/j.molonc.2012.02.002.

[16]. Leclerc, S,. Garnier, M., Hoessel, R., Marko, D., Bibb, J.A., Snyder, G.L., Greengard, P., Biernat, J., Wu, Y.Z., Mandelkow, E.M., Eisenbrand, G., Meijer, L. (2001). Indirubins inhibit glycogen synthase kinase-3β and CDK5/P25, two protein kinases involved in abnormal tau phosphorylation in Alzheimer's disease. A property common to most cyclin-dependent kinase inhibitors? The Journal of Biological Chemistry, 276(1), 251-260. DOI: 10.1074/jbc.M002466200.

[17]. Hussain, M.S., Fareed, S., Ansari, S., Rahman, M.A., Ahmad, I.Z., Saeed, M. (2012). Current approaches toward production of secondary plant metabolites. Journal of Pharmacy and Bioallied Sciences, 4(1), 10-20. DOI: 10.4103/0975-7406.92725.

[18]. Lambert, E., Faizal, A., Geelen, D. (2011). Modulation of triterpene saponin production: In vitro cultures, elicitation, and metabolic engineering. Applied Biochemistry and Biotechnology, 164(2), 220-237. DOI: 10.1007/s12010-010-9129-3.

[19]. Sahu, R., Gangopadhyay, M., Dewanjee, S. (2013). Elicitor-induced rosmarinic acid accumulation and secondary metabolism enzyme activities in Solenostemon scutellarioides. Acta Physiologiae Plantarum, 35(5), 1473-1481. DOI: 10.1007/s11738-012-1188-3.

[20]. Ramirez-Estrada, K., Vidal-Limon, H., Hidalgo, D., Moyano, E., Golenioswki, M.M., Cusidó, R., Palazon, J. (2016). Elicitation, an Effective Strategy for the Biotechnological Production of Bioactive High-Added Value Compounds in Plant Cell Factories. Molecules, 21(2), 182. DOI: 10.3390/molecules21020182.

[21]. Largia, M.J.V., Pothiraj, G., Shilpha, J., Ramesh, M. (2015). Methyl jasmonate and salicylic acid synergism enhances bacoside A content in shoot cultures of Bacopa monnieri (L.). Plant Cell, Tissue and Organ Culture, 122(1), 9-20. DOI: 10.1007/s11240-015-0745-z.

[22]. Zaker, A., Sykora, C., Gössnitzer, F., Abrishamchi, P., Asili, J., Mousavic, S.H., Wawroschd, C. (2015). Effects of some elicitors on tanshinone production in adventitious root cultures of Perovskia abrotanoides Karel. Industrial Crops and Products, 67, 97-102. DOI: 10.1016/j.indcrop.2015.01.015.

[23]. Ali, M.B., Hahn, E.J., Paek, K.Y., (2007). Methyl jasmonate and salicylic acid induced oxidative stress and accumulation of phenolics in Panax ginseng bioreactor root suspension cultures. Molecules, 12(3), 607-621. DOI: 10.3390/12030607.

[24]. Horbowicz, M., Chrzanowski, G., Koczkodaj, D., Mitrus, J. (2011). The effects of methyl jasmonate vapors on content of phenolic compounds in seedlings of common buckwheat (Fagopyrum esculentum Moench). Acta Societatis Botanicorum Poloniae, 80(1), 5-9. DOI: 10.5586/asbp.2011.001.

[25]. Ali, R.M. (2000). Role of putrescine in salt tolerance of Atropa belladonna plant. Plant Science, 152(2), 173-179. DOI: 10.1038/srep14390.

[26]. Tiburcio, A., Kaur-Sawhney, R., Ingersoll, R.B., Galston, A.W. (1985). Correlation between polyamines and pyrrolidine alkaloids in developing tobacco callus. Plant Physiology, 78(2), 323-326. DOI: 10.1104/pp.78.2.323.

[27]. Bais, H.P., Madhusudhan, R., Bhagyalakshmi, N., Rajasekaran, T., Ramesh, B.S., Ravishankar, G.A. (2000). Influence of polyamines on growth and formation of secondary metabolites in hairy root cultures of Beta vulgaris and Tagetes patula. Acta Physiologiae Plantarum, 22(2), 151-158. DOI: 10.1007/s11738-000-0070-x.

[28]. Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiologia Plantarum, 15(3), 473-497. DOI: 0.1111/j.1399-3054.1962.tb08052.x.

[29]. Liau, B.C., Jong, T.T., Lee, M.R., Chen, S.S. (2007). LC-APCI-MS method for detection and analysis of tryptanthrin, indigo and indirubin in daqingye and banlangen. Journal of Pharmaceutical and Bıomedical Analysis, 43(1), 346 - 351. DOI: 10.1016/j.jpba.2006.06.029.

[30]. Vázquez-Flota, F., Hernández-Dominguez, E., De Lourdes, Miranda-Ham, M., Monforte-González, M. (2009). A differential response to chemical elicitors in Catharanthus roseus in vitro cultures. Biotechnology Letters, 31(4), 591-595. DOI: 10.1007/s10529-008-9881-4.

[31] Chaichana, N., Dheeranupattana, S. (2012). Effects of methyl jasmonate and salicylic acid on alkaloid production from in vitro culture of Stemona sp. International Journal of Bioscience, Biochemistry and Bioinformatics, 2(3), 146 150. DOI: 10.7763/IJBBB.2012.V2.89.

[32]. Cho, H., Son, S.Y., Rhee, H.S., Yoon, S.H., Lee-Parsons, C.W.T., Park, J.M. (2008). Synergistic effects of sequential treatment with methyl jasmonate, salicylic acid and yeast extract on benzophenanthridine alkaloid accumulation and protein expression in Eschscholtzia californica suspension cultures. Journal of Biotechnology, 135(1), 117-122. DOI: 10.1016/j.jbiotec.2008.02.020.

[33]. Lee-Parsons, C.W.T., Ertürk, S., Tengtrakool, J. (2004). Enhancement of ajmalicine production in Catharanthus roseus cell cultures with methyl jasmonate is dependent on timing and dosage of elicitation. Biotechnology Letters, 26(20), 1595-1599. DOI: 10.1023/B:BILE.0000045825.37395.94.

[34]. Sudha, G., Ravishankar, G.A. (2003). Putrescine facilitated enhancement of capsaicin production in cell suspension cultures of Capsicum frutescens. Journal of Plant Physiology, 160(4), 339-346. DOI: 10.1078/0176-1617-0092.

[35]. Suresh, B., Thimmaraju, R., Bhagyalakshmi, N., Ravishankar, G.A. (2004). Polyamine and methyl jasmonate-influenced enhancement of betalaine production in hairy root cultures of Beta vulgaris grown in a bubble column reactor and studies on efflux of pigments. Process Biochemistry, 39(12), 2091-2096. DOI: 10.1016/j.procbio.2003.10.009.

[36]. Robins, R.J., Parr, A.J., Bent, E.G., Rhodes, M.J. (1991). Studies on the biosynthesis of tropane alkaloids in Datura stramonium L. transformed root cultures: 1. The kinetics of alkaloid production and the influence of feeding intermediate metabolites. Planta, 183(2), 185-195. DOI: 10.1007/BF00197787.

[37] Pıątczak, E., Kuźma, L., Wysokıńska, H. (2016). The Influence of Methyl Jasmonate and Salicylic Acid on Secondary Metabolite Production in Rehmannia glutinosa libosch. Hairy Root Culture. Acta Biologica Cracoviensia Series Botanica, 58(1), 57-65. DOI: 10.1515/abcsb-2016-0004.