Quantitative analysis of Polydatin in a Turkish oak: Quercus coccifera L. with HPLC-DAD Quantitative analysis of Polydatin in a Turkish oak: Quercus coccifera L. with HPLC-DAD

Main Article Content

Merve Yüzbaşıoğlu Baran https://orcid.org/0000-0002-7482-0429 Didem Şöhretoğlu Ayşe Kuruüzüm Uz https://orcid.org/0000-0003-3373-4759

Abstract

In this study, a new, simple, rapid and sensitive HPLC-DAD method was used for analysing polydatin contents of Quercus coccifera (Fagaceae) woody parts extracted with methanol and water. Our results showed that methanol and water extracts of Q. coccifera had high polydatin contents: 14.898±0.147 and 5.574±0.112 mg/g dry extracts, respectively. This is the first developed analytical method for qualitative and quantitative analysis of polydatin in Quercus L. species.

Article Details

Section
Sending to International Journal of Secondary Metabolite

References

[1] Du, Q.H., Peng, C., Zhang, H. (2013). Polydatin: a review of pharmacology and pharmacokinetics. Pharm Biol., 51, 1347 - 1354. http://doi.org/10.3109/13880209.2013.792849
[2] Sohretoglu, D., Yuzbasioglu Baran, M., Arroo, R., Kuruuzum-Uz, A. (2018). Recent advances in chemistry, therapeutic properties and sources of polydatin. Phytochem Rev., 17, 973–1005. http://doi.org/10.1007/s11101-018-9574-0
[3] Ribeiro de Lima, M.T., Waffo-Teguo, P., Teissedre, P.L., Pujolas, A., Vercauteren, J., Cabanis, J.C., Merillon, J.M. (1999) Determination of stilbenes (trans-astringin, cis- and trans-piceid, and cis- and trans-resveratrol) in Portuguese wines. J Agric Food Chem., 47, 2666-2670. http://doi.org/10.1021/jf9900884
[4] Varache-Lembege, M., Teguo, P.W., Richard, T., Monti, JP, Deffieux, G., Vercauteren, J., Merillon, J.M., Nuhrich, A. (2000). Structure-activity relationships of polyhydroxystilbene derivatives extracted from Vitis vinifera cell cultures as inhibitors of human platelet aggregation. Med Chem Res., 10, 253-267. http://doi.org/10.1016/S0024-3205(03)00096-1
[5] Vitrac, X., Monti, J.P., Vercauteren, J., Deffieux, G., Merillon, J.M. Direct liquid chromatographic analysis of resveratrol derivatives and flavanonols in wines with absorbance and fluorescence detection. (2002). Anal Chim Acta., 458, 103-110. http://doi.org/10.1016/S0003-2670(01)01498-2
[6] Chen, Y., Zhang, D., Liao, Z., Wang, B., Gong, S., Wang, C., Zhang, M., Wang, G., Cai, H., Liao, F. Antioxidant polydatin (piceid) protects against substantia nigral motor degeneration in multiple rodent models of Parkinson’s disease. (2015). Mol Neurodegener., 10, 4. http://doi.org/10.1186/1750-1326-10-4
[7] Hedge, I., Yaltırık, F. Quercus L. In Davis PH, Mill RR, Tan K, Editor. Flora of Turkey and the East Aegean Islands. Edinburgh University Press: Edinburgh, 1982; vol:7 pp. 659-683.
[8] Baytop, T. (1999). Therapy with Medicinal Plants in Turkey (Past and Present), Nobel Tıp Kitabevi Ltd Şti., İstanbul.
[9] Şöhretoğlu, D., Sakar, M. (2004) Quercus türlerinin polifenolik bileşikleri ve biyolojik aktiviteleri. Ankara Univ. J Fac. Pharm., 33, 183 - 215. http://doi.org/10.1501/Eczfak_0000000470
[10] Bremness L. The Complete Book of Herbs, Dorling Kindersley, London, 1995.
[11] Söhretoglu, D., Kuruüzüm-Uz, A, Simon, A, Patócs T, Dékány M. (2014). New Secondary metabolites from Quercus coccifera L. Rec Nat Prod., 8, 323-329.
[12] Hurst, W.J., Glinski, J.A., Miller, K.B., Apgar, J., Davey, M.H., Stuart, D.A. (2008) Survey of the trans-resveratrol and trans-piceid content of cocoa-containing and chocolate products. J Agric Food Chem., 56, 8374-8378. http://doi.org/10.1021/jf801297w
[13] Hollman, P.C., de Vries, J.H., van Leeuwen, S.D., Mengelers, M.J., Katan, M.B. (1995). Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. Am J Clin Nutr., 62, 1276-1282. http://doi.org/10.1093/ajcn/62.6.1276
[14] Paganga, G., Rice-Evans, C.A. (1997). The identification of flavonoids as glycosides in human plasma. FEBS Letters, 401, 78-82. http://doi.org/10.1016/S0014-5793(96)01442-1
[15] Genç, Y., Yüzbaşıoğlu, M., Harput, U.S., Kuruuzum-Uz A. (2012) Antioxidant activity and total phenolic content of Quercus coccifera L. FABAD J Pharm Sci., 37, 17-22.
[16] Lamuela-Raventos, R.M., Romero-Perez, A.I., Waterhouse, A.L., De La Torre-Boronat MC. (1995). Direct HPLC analysis of cis-and trans-resveratrol and piceid isomers in Spanish red Vitis vinifera wines. J Agric Food Chem., 43, 281-283. http://doi.org/10.1021/jf00050a003
[17] Romero-Pérez, A.I., Ibern-Gómez, M., Lamuela-Raventós, R.M., de la Torre-Boronat, M.C. (1999). Piceid, the major resveratrol derivative in grape juices. J Agric Food Chem. 7, 1533-1536. http://doi.org/10.1021/jf981024g
[18] Burns, J., Yokota, T., Ashihara, H., Lean, M.E., Crozier. (2002). A. Plant foods and herbal sources of resveratrol. J Agric. Food Chem., 50, 3337 - 3340. http://doi.org/10.1021/jf0112973
[19] Peng., X.L., Xu, J., Sun, X.F., Ying, C.J., Hao, L.P. (2015). Analysis of trans-resveratrol and trans-piceid in vegetable foods using high-performance liquid chromatography. Int J Food Sci Nutr., 66, 729-735. http://doi.org/10.3109/09637486
[20] Zhu, Y., Yin, Q., Du, P., Huang, S., Yang, Y. (2018). Simultaneous quantitative determination of active components in Tetrastigma hemsleyanum by RP-HPLC coupled with diode array detection. Acta Chromatogr. 30, 186 - 190. https://doi.org/10.1556/1326.2017.00231
[21] ICH Guidelines Q2 (R1), Validation of Analytical Procedures: Text and Methodology, Geneva, November 2005.