Fragrance Component Analysis for Nebulvapours of Anchovy (Engraulis encrasicolus) Oils by using Colorimetric Printing and Electronic Nose Fragrance Component Analysis of Anchovy

Main Article Content

Ozan Emre Eyupoğlu http://orcid.org/0000-0002-4449-0537

Abstract

Analysis of odor components about biochemicals find the wide space in the evaluation of flavor parameters and anchovies as biological materials. Food dye solutions as printer's inks were sprayed on to the fabric throughout the printing operation and skin oil vapors of anchovy were simultaneously sent to the paper hopper of printer intensely via a nebulizer device. Before and after dyeing process, images of tela fabric were taken by smartphone and analyzed by software in the smartphone for the purpose of determination of colorimetric fragrance component concentrations and visual odor profile in range of visible region. The ten major ingredient contents (with relative percentages) (aldehyde compounds intensely such as 2,4-heptadienal (23%), (E,E)-2,4-nonadienal (17%)) of anchovy skin essential oils were determined. For colorimetric printing analysis via smartphone, LOD and LOQ were 1 ppm and 3 ppm, respectively. Methodology can be used in the analysis of toxic components that interact with foods.

Article Details

Section
Sending to International Journal of Secondary Metabolite
Author Biography

Ozan Emre Eyupoğlu, Istanbul Medipol University

Ozan Emre EYUPOĞLU, Assist. Prof. Dr. Istanbul Medipol University  School of Pharmacy, Basic Science of Pharmacy, Head of Biochemistry department

References

[1]. Sahin, C., Hacımurtazaoglu, N. (2013). Abundance and distribution of eggs and larvae of anchovy (Engraulis encrasicolus, Linnaeus, 1758) and horse mackerel (Trachurus mediterraneus, Steindachner, 1868) on the coasts of the eastern Black Sea. Turk J Zool., 37, 773–781, doi:10.3906/zoo-1212-31.
[2]. Storelli, M.M., Giachi, L., Giungato, D., Storelli, A. (2011). Occurrence of Heavy Metals (Hg, Cd, and Pb) and Polychlorinated Biphenyls in Salted Anchovies. J. Food Prot., 74(5), 796–800, doi:10.4315/0362-028x.jfp-10-453.
[3]. Díaz, E., Txurruka, J., Villate, F. (2008). Biochemical composition and condition in anchovy larvae Engraulis encrasicolus during growth. Mar Ecol Prog Ser., 361, 227–238, doi:10.3354/meps07443.
[4]. Tural, S., Turhan, S. (2017). Effect of anchovy by-product protein coating incorporated with thyme essential oil on the shelf life of anchovy (Engraulis encrasicolus L.) fillets. Food Sci Biotechnol., 26 (5), 1291–1299, doi:10.1007/s10068-017-0185-0.
[5]. McGill, A.S., Moffat, C.F. (1992). A study of the composition of fish liver and body oil triglycerides. Lipids, 27(5), 360–370, doi:10.1007/bf02536151.
[6]. Tewary, S., Arun, I., Ahmed, R., Chatterjee, S., Chakraborty, C. (2017). SmartIHC-Analyzer: smartphone assisted microscopic image analytics for automated Ki-67 quantification in breastcancer evaluation. Anal. Methods, 9 (43), 6161–6170, doi:10.1039/c7ay02302b.
[7]. Chen, Y., Fu, Q., Li, D., Xie, J., Ke, D., Song, Q. (2017). A smartphone of colorimetric reader integrated with an ambient light sensor and a 3D printed attachment for on-site detection of zearalenone. Anal Bioanal Chem., 409 (28), 6567-6574, doi:10.1007/s00216-017-0605-2.
[8]. Jacobs, R.A. (2001). Three-Dimensional Photography. Plast Reconstr Surg, 107 (1), 276–277.
[9]. Sun, J., Jin, J., Beger, R.D., Cerniglia, C.E., Chen, H. (2017). Evaluation of metabolism of azo dyes and their effects on Staphylococcus aureus metabolome. J Ind Microbiol Biotechnol, 44 (10), 1471–1481, doi:10.1007/s10295-017-1970-8.
[10]. Feng, L., Musto, C.J., Suslick, K.S. (2010). A Simple and Highly Sensitive Colorimetric Detection Method for Gaseous Formaldehyde. J Am Chem Soc, 132 (12), 4046–4047, doi:10.1021/ja910366p.
[11]. Mills, A., Chang, Q., McMurray, N. (1992). Equilibrium studies on colorimetric plastic film sensors for carbon dioxide. Anal. Chem., 64 (13), 1383–1389, doi:10.1021/ac00037a015.
[12]. Thorngate, J. (2002). Synthetic food colorants, A.L. Branen (Ed.), Food additives (second ed.), Marcel Dekker, Inc., New York, 422-500.
[13]. Nielsen, S. (2005). Handbook of food analysis, physical characterization and nutrient analysis. J Food Qual., 28 (5-6), 507–508, doi:10.1111/j.1745-4557.2005.00030.x.
[14]. Downham, A., Collins, P. (2000). Colouring our foods in the last and next millennium. Int. J. Food Sci. Tech., 35 (1), 15–22, doi:10.1046/j.1365-2621.2000.00373.x.
[15]. Wannenmacher, J., Jim, S.R., Taschuk, M.T., Brett, M.J., Morlock, G.E. (2013). Ultrathin- layer chromatography on SiO2, Al2O3, TiO2, and ZrO2 nanostructured thin films. J Chromatogr A, 1318, 234–243, doi:10.1016/j.chroma.2013.09.083.
[16]. Zhang, Y., Lyu, F., Ge, J., Liu, Z. (2014). Ink-jet printing an optimal multi-enzyme system. Chem. Commun., 50(85), 12919–12922, doi:10.1039/c4cc06158f.
[17]. Kuswandi, B., Jayus, J., Restyana, A., Abdullah, A., Heng, L.Y., Ahmad, M. (2012). A novel colorimetric food package label for fish spoilage based on polyaniline film. Food Control, 25 (1), 184-189, doi:10.1016/j.foodcont.2011.10.008.
[18]. Zhang, Y., Lim, L.T. (2016). Inkjet-printed CO2 colorimetric indicators. Talanta, 161, 105–113, doi:10.1016/j.talanta.2016.08.014.
[19]. Morsy, M.K., Zór, K., Kostesha, N., Alstrøm, T.S., Heiskanen, A., El-Tanahi, H. (2016). Development and validation of a colorimetric sensor array for fish spoilage monitoring. Food Control, 60, 346–352, doi:10.1016/j.foodcont.2015.07.038.
[20]. Ólafsdóttir, G., Kristbergsson, K. (2006). Electronic-Nose Technology: Application for Quality Evaluation in the Fish Industry. In: Nicolay X. (eds) Odors in the Food Industry. Springer, Boston, MA, doi:10.1007/978-0-387-34124-8_5.
[21]. Kwon, H., Samain, F., Kool, E.T. (2012). Fluorescent DNAs printed on paper: sensing food spoilage and ripening in the vapor phase. Chem Sci, 3 (8), 2542, doi:10.1039/c2sc20461d.
[22]. Anonymous. (2004). Innovations in fibres, textiles, apparel and machinery. Text. Outlook Int., 114, 60-99.
[23]. Udey, R.N., Jones, A.D., Farquar, G.R. (2013). Aerosol and Microparticle Generation Using a Commercial Inkjet Printer. Aerosol Sci Technol., 47(4), 361–372, doi:10.1080/02786826.2012.752790.
[24]. Blake, K., Raissy, H. (2017). Inhaling Essential Oils: Purported Benefits and Harms. Pediat Aller Imm Pul., 30 (3), 186-188, doi: 10.1089/ped.2017.0805.
[25]. Da Silva, E.R., Oliveira, D.R., de, Fernandes, P.D., Bizzo, H.R., Leitão, S.G. (2017). Ethnopharmacological Evaluation of Breu Essential Oils from Protium Species Administered by Inhalation. Evid-Based Compl Alt., 2017, 1–10, doi:10.1155/2017/2924171.
[26]. Pohanka, M., Zakova, J., Sedlacek, I. (2018). Digital camera-based lipase biosensor for the determination of paraoxon. Sensor Actuat B Chem., 273, 610–615, doi:10.1016/j.snb.2018.06.084.
[27]. Chen, G., Fang, C., Chai, H.H., Zhou, Y., Li, W.Y., Yu, L. (2019). Improved analytical performance of smartphone-based colorimetric analysis by using a power-free imaging box. Sensor Actuat B Chem., 281, 253–261, doi:10.1016/j.snb.2018.09.019.
[28]. Rock, F., Barsan, N., Weimar, U. (2008). Electronic Nose: Current Status and Future Trends. Chem. Rev., 108(2), 705–725, doi:10.1021/cr068121q.
[29]. Andriamandroso, A.L.H., Lebeau, F., Beckers, Y., Froidmont, E., Dufrasne, I., Heinesch, B. (2017). Development of an open-source algorithm based on inertial measurement units (IMU) of a smartphone to detect cattle grass intake and ruminating behaviors. Comput Electron Agr., 139, 126-137, doi:10.1016/j.compag.2017.05.020.
[30]. Nimmano, N., Somavarapu, S., Taylor, K.M.G. (2018). Aerosol characterisation of nebulised liposomes co-loaded with erlotinib and genistein using an abbreviated cascade impactor method. Int. J. Pharm., 542 (1-2), 8–17, doi:10.1016/j.ijpharm.2018.02.035.
[31]. Schneider, C.A., Rasband, W.S., Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675, doi:10.1038/nmeth.2089.
[32]. Sunoj, S., Igathinathane, C., Saliendra, N., Hendrickson, J., Archer, D. (2018). Color calibration of digital images for agriculture and other applications. ISPRS J Photogramm Remote Sens, 146, 221–234, doi:10.1016/j.isprsjprs.2018.09.015.
[33]. Ma, N.T., Chyau, C.C., Pan, B.S. (2004). Fatty acid profile and aroma compounds of lipoxygenase-modified chicken oil. J. Am. Oil Chem.' Soc., 81 (10), 921–926, doi:10.1007/s11746-004-1002-8.
[34]. Leduc, F., Tournayre, P., Kondjoyan, N., Mercier, F., Malle, P., Kol, O. (2012). Evolution of volatile odorous compounds during the storage of European seabass (Dicentrarchus labrax). Food Chem., 131 (4), 1304–1311, doi:10.1016/j.foodchem.2011.09.123.
[35]. Zhang, H., Wang, J., Tian, X., Yu, H., Yu, Y. (2018). Optimization of sensor array and detection of stored duration of wheat by electronic nose. J Food Eng., 82(4), 403–408, doi:10.1016/j.jfoodeng.2007.02.005.
[36]. Hai, Z., Wang, J. (2006). Electronic nose and data analysis for detection of maize oil adulteration in sesame oil. Sensor Actuat B Chem., 119 (2), 449–455, doi:10.1016/j.snb.2006.01.001.
[37]. Eyupoglu, O. (2019). Antioxidant Activities, Phenolic Contents and Electronic Nose Analysis of Black Garlic. IJSM, 6 (2), 154-161, doi: 10.21448/ijsm.564813.
[38]. Zheng, D., Wang, P., Zhou, J., Ho, K.C. (2019). Color pattern recognition for yarn-dyed fabrics. Color Res Appl., 44, 88–97, doi:10.1002/col.22263.
[39]. Li, J., Sun, Y., Chen, C., Sheng, T., Liu, P., Zhang, G. (2019). A Smartphone-assisted microfluidic chemistry analyzer using image-based colorimetric assays for multi-index monitoring of diabetes and hyperlipidemia. Anal. Chim. Acta, 1052, 105-112, doi:10.1016/j.aca.2018.11.025.
[40]. Sohrabi, S., Liu, Y. (2018). Modeling thermal inkjet and cell printing process using modified pseudopotential and thermal lattice Boltzmann methods. Phys. Rev. E, 97 (3), 033105, doi:10.1103/PhysRevE.97.033105.
[41]. Musile, G., Wang, L., Bottoms, J., Tagliaro, F., McCord, B. (2015). The development of paper microfluidic devices for presumptive drug detection. Anal Methods, 7 (19), 8025-8033, doi:10.1039/c5ay01432h.