Overcoming Glucosinolate-Myrosinase-Isothiocyanate Defense System by Plant Pathogenic Fungi

Main Article Content

Fatemeh Rahimi Siamak Rahmanpour

Abstract

Natural compounds play an important role in shaping living plant responses. The resistance of plants is dependent on the formation and production of antimicrobial compounds of secondary metabolites. Glucosinolate (GSL) is the main source of phytoanticipin in Brassicaceae and other plant families. The biological activity of glucosinolate is dependent on the release of various toxic compounds due to hydrolysis by myrosinase, isothiocyanate (ITC) is glucosinolate-breakdown products that inhibit the growth of microorganisms. Glucosinolate research enables us to more fully exploit the potential of these compounds in medicine and agriculture.

Article Details

Section
Sending to International Journal of Secondary Metabolite

References

[1]. Agerbırk N., Olsen S. 1998. Initial, and final products, nitriles, and ascorbates produced in myrosinase-catalyzed hydrolysis of indole glucosinolates. J Agric Food Chem 46(4): 1563–1571.
[2]. Bednarek P., Bednarek M., Svatos A., Schneider B., Doubsky J., Mansurova M., Humphry M., Consonni Ch., Panstruga R., Sanchez-Vallet A., Molina A., Schulze-Lefert P. (2009). A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 323(5910): 101-106.
[3]. Bones A.M., Rossiter J.T. 1996. The myrosinase-glucosinolate system its organization and biochemistry. Physiologia Plantarum 97(1): 194-208.
[4]. Brader G., Mikkelsen M.D., Halkier B.A., Tapio Palva E. 2006. Altering glucosinolate profiles modulates disease resistance in plants. The Plant Journal 46(5): 758-767.
[5]. Brown P.D., Morra M.J., 1996. Hydrolysis products of glucosinolates in Brassica napus tissues as inhibitors of seed germination. Plant and soil 181(2): 307-316.
[6]. Burow M., Bergner A., Gershenzon J., Wıttstock U. 2007 Glucosinolate Hydrolysis İn Lepidium Sativum İdentification Of The Thiocyanate-Forming Protein. Plant Mol Biol 63(1): 49–61.
[7]. Calmes B., Guyen G., Dumur J., Brisach C.A., Campio C., Iacomi B., Pigne S., Dias E., Macherel D., Guillemette T., Simoneau P. 2015. Glucosinolate-derived isothiocyanates impact mitochondrial function in fungal cells and elicit an oxidative stress response necessary for growth recovery. Frontiers in the plant. Science Vol 6. Article 414.
[8]. Fahey J.W., Zalcmann A.T., Talalay P. 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56(1):5-51.
[9]. Francis F., Vanhaelen N., Haubruge E. 2005. Glutathione S-transferases in the adaptation to plant secondary metabolites in the Myzus persicae aphid. Archives of Insect Biochemistry and Physiology 58(3): 166-174.
[10]. Grubb D., Abel S. 2006. Glucosinolate metabolism and its control. Trends in plant science 11(2)89-100.
[11]. Halkier B.A., Gerchenzon J. 2006. Biology and biochemistry of glucosinolates. Annual review of plant biology 57:303-333.
[12]. Hasapıs X., MacLeod A.J. 1982. Benzylglucosinolate degradation in heat-treated Lepidium sativum seeds and detection of a thiocyanate- forming factor. Phytochemistry 21(5): 1009–1013.
[13]. Hopkins R.J., Van Dam N.M., Van Loon J.A. 2009. Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annual Review of Phytopathology 54:57-83.
[14]. Ishimoto H., Fukushi Y., Yoshida T., Tahara S. 2000. Rhizopus and Fusarium are selected as dominant fungal genera in rhizospheres of Brassicaceae. J. Chem. Ecol. 26(10): 2387-99.
[15]. Jones A.M.E., Winge P., Bones A.M., Cole R., Rossiter J.T. 2002. Characterization and evolution of a myrosinase from the cabbage aphid Brevicoryne brassicae. Insect Biochem Mol Biol, 32(3): 275-284.
[16]. Kawakishi S., Kaneko T. 1985. Interaction of oxidized glutathione with allyl isothiocyanate. Phytochemistry 24 (4): 715-718.
[17]. Kissen R., Rossiter J.T. 2009. The mustard oil bomb: not so easy to assemble?! Localization, expression, and distribution of the components of the myrosinase enzyme system. Phytochemistry Reviews. 8 (1): 69-86.
[18]. Kliebenstein D.J. 2004. Secondary metabolites and plant/environment interactions: a view through Arabidopsis thaliana tinged glasses. Plant, Cell, and Environment 27 (6): 675-684.
[19]. Kliebenstein D.J., Kroymann J., Thomas M.O. 2005. The glucosinolate-myrosinase system in an ecological and evolutionary context. Current opinion in plant biology 8(3):264-271.
[20]. Kolm R.H., Danielson U.H., Zhang Y., Talalay P., Mannervik B. 1995. Isothiocyanates as substrates for human glutathione transferases: structure-activity studies. Biochemistry Journal 311 (2): 453-459.
[21]. Kovalchuk A., Kerio S., Oghenekaro A.O., Jaber E., Raffaello T., Asiegbu F.O. 2013. Antimicrobial defenses and resistance in forest trees: challenges and perspectives in a genomic era. Annual Review of Phytopathology 51:221-244.
[22]. Manici L.M., Lazzeri L., Palmieri S. 1997. In vitro fungitoxic activity of some glucosinolates and their enzyme-derived products toward plant pathogenic fungi. Journal of Agricultural and Food Chemistry 45(7): 2768-2773.
[23]. Mccully M., Miller C., Sprague S. 2008. The distribution of glucosinolates and sulfur-rich cells in roots of field-grown canola Brassica napus. New. Phytol. 180(1): 193-205.
[24]. Merillon J.M., Ramawat K.G. 2017.Advances in botanical research: Glucosinolates. Springer International Publishing, Switzerland, 349 pp.
[25]. Mithen R.F., Lewis BG., Fenwick G.R. 1986. In vitro activity of glucosinolates and their products against Leptosphaeria maculans. Transactions of the British Mycological Society 87(3): 433-440.
[26]. Mithen R., Dekker M., Verkerk R., Robot S., Johnson IT. 2000. The nutritional significance, biosynthesis, and bioavailability of glucosinolates in human foods. Journal of the science of food and agriculture 80(7): 967-984.
[27]. Mueller C., Agerbirk N., Olsen C.E., Boeve J.L., Schaffner U., Brakefield P.M. 2001. Sequestration of host plant glucosinolates in the defensive hemolymph of the sawfly Athalia rosae. J Chem Ecol, 27(12): 2505-2516
[28]. Pastor V., Luna E., Mauch-Mani B., Ton J., Flores V. 2013. Primed plants to do not forget. Environ Exp. Bot. 94:46-56.
[29]. Pedras M.S.C., P. Ahianhonu W.K., Hossain M. 2004. Detoxification of the cruciferous phytoalexin brassinin in Sclerotinia sclerotiorum requires an inducible glucosyltransferase. Phytochemistry 65(19): 2685-2694.
[30]. Rabot S., Guerin C., Nugon-Baudon L., Szylit O. 1995. Glucosinolate degradation by bacterial strains isolated from a human intestinal microflora. Proc.9th Int. Rapeseed Congress, Cambridge. B 26, 212-214.
[31]. Rahmanpour Ozan S. 2008. Studies on the role of the glucosinolate-myrosinase system resistance of oilseed rape to Sclerotinia sclerotiorum, Ph.D. Thesis, University of New England, Australia.116 pp.
[32]. Rask L., Anderson E., Ekbom B., Eriksson S., Pontoppidan B., Meijer J. 2000. Myrosinase: gene family evolution and herbivore defense in Brassicaceae. Plant Molecular Biology 42(1): 93-113.
[33]. Ratzka A., Vogel H., Kliebenstein D.J., Mitchell-Olds T., Kroymann J. 2002. Disarming the mustard oil bomb. PNAS 99(17): 11223-11228.
[34]. Redovnikovic I.R., Glivetic T., Vorkapic-Furac J. 2008. Glucosinolates and their potential role in the ant. Periodicum biologorum. 110(4): 297-309.
[35]. Rodman J.E., Karol K.G., Price R.A. Systema K.J. 1996. Molecules morphology, and Dahlgren's expanded order Capparales 21(3): 289-307.
[36]. Sellam A., P Poupard., Simoneau P. 2006. Molecular cloning ofAbGst1 encoding a glutathione transferase differentially expressed during exposure of Alternaria brassicicola to isothiocyanates. FEMS Microbiology Letters 258: 241-249.
[37]. Sexton A.C., Kirkgaard J.A., Howlett B.J. 1999. Glucosinolates in Brassica juncea and resistance to Australian isolates of Leptosphaeria maculans, the blackleg fungus. Australian Plant Pathology 28(2): 95-102.
[38]. Stotz H.U., Sawada Y., Shimada Y. 2011. Role of camalexin, indole glucosinolate-derived isothiocyanates in defense of Arabidopsis against Sclerotinia sclerotiorum. Plant Journal 67(1):81-93.
[39]. Thangstad O.P., Winge P., Husebye H., Bones A. 1993. The myrosinase gene family in Brassicaceae. Plant molecular biology 23(3): 511-524.
[40]. Tierens K., Thomma B.P.H., Brouwer M., Schmidt J., Kistner K., Porzel A., Mauch-Mani B., Cammue B.P.A., Broekaert W.F. 2001. Study of the role of antimicrobial glucosinolate-derived isothiocyanates in resistance of Arabidopsis to microbial pathogens. Plant Physiol. 125(4): 1688-99.
[41]. Turner J.G., Ellis C., Devoto A. 2002. The Jasmonate Signal Pathway. Am Soc Plant Biol The plant cell. 14(1).
[42]. Uda Y., Kurata T., Arakawa N. 1986. Effects of ph and ferrous ion on the degradation of glucosinolates by myrosinase. Agr Bio. Chem. 50(11): 2735-2740.
[43]. Van Etten H.D., Mansfield J.W., Bailey J.A., Farmer E.E. 1994. Two classes of plant antibiotics: phytoalexins versus phytoanticipins. Plant cell. 6(9):1191-1192.
[44]. Van Poecke R.M., Posthumus M.A., Dicke M. 2001. Herbivore-induced volatile production by Arabidopsis thaliana leads to the attraction of the parasitoid Cotesia rubecula: chemical, behavioral, and gene-expression analysis. J Chem Ecol, 27(10): 1911-1928.
[45]. Wittstock U., Halkier B.A. 2002. Glucosinolate research in the Arabidopsis era. Trends in plant science. 7(6): 263-270.
[46]. Wittstock U., Agerbirk N., Stauber E.J., Olsen C.E., Hippler M., Mitchell-Olds T., Gershenzon J., Vogel H. 2004. Successful herbivore attack due to metabolic diversion of a plant chemical defense. Proc Natl Acad Sci USA, 101(14): 4859-4864.
[47]. Wu X., Meijer M.J. 1999. In Vitro Degradation of intact glucosinolates by phytopathogenic fungi of Brassica. Proceedings of the 10th International Rapeseed Congress, Canberra, Australia.