Production of Biogas and Astaxhantin from Fruit and Vegetable Wastes Using an Integrated System

Main Article Content

Tugba Keskin-Gundogdu Okyanus Yazgın

Abstract

The use of fruit and vegetable wastes in biogas production is attractive as it provides both waste treatment and energy production together. The use of CO2 in biogas for algae cultivation with a zero waste approach will make this process even more attractive. In this way, biogas enrichment which is mostly made by economically costly and non environmentally friendly methods will be achieved and algae cultivation will become more economical. In the first part of the study the operation conditions for biogas reactor and algea reactor for astaxhantin production were optimized separately. Up to 1.2 LCH4/day rate and 0.5 L CH4/g VS yield values were obtained with 2.5 g DM/L.day organic loading rate with anaerobic bioreactor and 5.1 mg/g astaxhantin was produced by air feeding. When it was decided that sufficient astaxanthin was produced, astaxanthin was obtained by using vegetable oils (oil and nut), an environmentally friendly extraction method. In the second part of the study the anaerobic bioreactor and the algae reactor was integrated and 6 mg/g astaxhantin production was observed by using fruit and vegetable wastes as substrate for biogas production and the CO2 in biogas was used for growth of H. pluvaris therefore astaxhantin production. The integrated system resulted in higher astaxhantin production with zero waste approach. Moreover the residual biomass remaining after extraction was fed back into the biogas reactor as a substrate, adopting a zero waste biorefinery approach.

Article Details

Section
Sending to International Journal of Secondary Metabolite
Author Biographies

Tugba Keskin-Gundogdu, Ege University

Ege University, Faculty of Engineering, Bioengineering Department, 35100, Izmir, Turkey

Okyanus Yazgın, Ege University

Ege University, Faculty of Engineering, Bioengineering Department, 35100, Izmir, Turkey

References

[1]. Mann, G., Schlegel, M., Schumann, R., Sakalauskas, A. (2009). Biogas-conditioning with microalgae. Agron. Res. 7 (1),33-38.(Available online: https://agronomy.emu.ee/vol071/p7104.pdf, 12.01.2020)
[2]. Ambati, R. R., Moi, P. S., Ravi, S., Aswathanarayana, R. G. (2014) Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications - A review. Marine Drugs ,12, 128-152. doi:10.3390/md12010128
[3]. Caponio, G., Massaro, V., Mossa, G., Mummolo, G. (2015) Strategic energy planning of residential buildings in a smart city: A system dynamics approach. Int. J. Eng. Bus.Manag..7(20),1-12. DOI:10.5772/61768
[4]. Weiland, P. (2010) Biogas production: Current state and perspectives. Applied Microbiology and Biotechnology 85, 849–860 .DOI: 10.1007/s00253-009-2246-7
[5]. Bagi, Z. et al. (2007) Biotechnological intensification of biogas production. Appl. Microbiol. Biotechnol. 76(2), 473-482. doi:10.1007/s00253-007-1009-6
[6]. Merlin Christy, P., Gopinath, L. R. , Divya, D. (2014) A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renewable and Sustainable Energy Reviews .34,167-173 doi:10.1016/j.rser.2014.03.010
[7]. Ranieri, L., Mossa, G., Pellegrino, R. , Digiesi, S. (2018) Energy recovery from the organic fraction of municipal solid waste: A real options-based facility assessment. Sustain. .10(2),368-375. doi:10.3390/su10020368
[8]. Salihoglu, G., Salihoglu, N. K., Ucaroglu, S. ,Banar, M. (2018) Food loss and waste management in Turkey. Bioresource Technology 248, 88-99. doi:10.1016/j.biortech.2017.06.083
[9]. Patil VS, Deshmukh HV.(2015) A review on Co-Digestion of Vegetable waste with Organic wastes for Energy Generation. International Research Journal of Biological Sciences4(6):80-83 .Available online URL: https://pdfs.semanticscholar.org/a00d/7e10b772fca5eb2161097ec108d7425a1d71.pdf 12.01.2020
[10]. Bouallagui, H. et al. (2004) Effect of temperature on the performance of an anaerobic tubular reactor treating fruit and vegetable waste. Process Biochem. . 39(12):2143-2148 doi:10.1016/j.procbio.2003.11.022
[11]. Velmurugan, B. , Ramanujam, R. A. (2011) Anaerobic digestion of vegetable wastes for biogas production in a fed-batch reactor. Int. J. Emerg. Sci . 1(3):478 Availabel online URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.473.4906&rep=rep1&type=pdf 12.01.2020
[12]. Viturtia, A. M., Mata-Alvarez, J., Cecchi, F. , Fazzini, G. (1989)Two-phase anaerobic digestion of a mixture of fruit and vegetable wastes. Biol. Wastes (1989). 13(3-4), 257-267 doi:10.1016/0269-7483(89)90130-4
[13]. Raynal, J., Delgenès, J. P. , Moletta, R. (1998) Two-phase anaerobic digestion of solid wastes by a multiple liquefaction reactors process. Bioresour. Technol. 65(1-2), 97-103. doi:10.1016/S0960-8524(98)00009-1
[14]. Bouallagui, H., Touhami, Y., Ben Cheikh, R. , Hamdi, M.(2005) Bioreactor performance in anaerobic digestion of fruit and vegetable wastes. Process Biochemistry, 40(3-4), 989-995 . doi:10.1016/j.procbio.2004.03.007
[15]. Scano, E. A. et al (2014). Biogas from anaerobic digestion of fruit and vegetable wastes: Experimental results on pilot-scale and preliminary performance evaluation of a full-scale power plant. Energy Convers. Manag.. 77, 22-30 doi:10.1016/j.enconman.2013.09.004
[16]. Sun, Q. et a l. (2015)Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation. Renewable and Sustainable Energy Reviews 51,521-532. doi:10.1016/j.rser.2015.06.029
[17]. Guerin, M., Huntley, M. E. , Olaizola, M. (2003) Haematococcus astaxanthin: Applications for human health and nutrition. Trends in Biotechnology . 21(5), 210-216 doi:10.1016/S0167-7799(03)00078-7
[18]. Shah, M. M. R., Liang, Y., Cheng, J. J. , Daroch, M. (2016) Astaxanthin-producing green microalga Haematococcus pluvialis: From single cell to high value commercial products. Frontiers in Plant Science . 7, 531-563. doi:10.3389/fpls.2016.00531
[19]. Higuera-Ciapara, I., Félix-Valenzuela, L. , Goycoolea, F. M. (2006) Astaxanthin: A review of its chemistry and applications. Critical Reviews in Food Science and Nutrition . 46(2), 185-196 doi:10.1080/10408690590957188
[20]. Xi, T., Kim, D. G., Roh, S. W., Choi, J. S. , Choi, Y. E. (2016) Enhancement of astaxanthin production using Haematococcus pluvialis with novel LED wavelength shift strategy. Appl. Microbiol. Biotechnol. 100(14), 6231-6238,doi:10.1007/s00253-016-7301-6
[21]. Boonnoun, P. , Kurita, Y. (2016) Wet Extraction of Lipids and Astaxanthin from Haematococcus pluvialis by Liquefied Dimethyl Ether. J. Nutr. Food Sci. . 4(5), 1000305 doi:10.4172/2155-9600.1000305
[22]. Kang, C. D. , Sim, S. J. (2008) Direct extraction of astaxanthin from Haematococcus culture using vegetable oils. Biotechnol. Lett. . 30(3),441-444 doi:10.1007/s10529-007-9578-0
[23]. Samorì, C., Pezzolesi, L., Galletti, P., Semeraro, M. , Tagliavini, E. (2019) Extraction and milking of astaxanthin from: Haematococcus pluvialis cultures. Green Chem.. in press. doi:10.1039/c9gc01273g
[24]. Rao, A. R., Sarada, R. , Ravishankar, G. A. (2007) Stabilization of astaxanthin in edible oils and its use as an antioxidant. J. Sci. Food Agric. . 87(6):957-965 doi:10.1002/jsfa.2766
[25]. Imamoglu, E. (2007) Effect of Different Culture Media and Light Intensities on Growth of Haematococcus pluvialis. Int. J. Nat. Eng. Sci. .1(3)
[26]. Azbar, N. et al. (2009) Comparative evaluation of bio-hydrogen production from cheese whey wastewater under thermophilic and mesophilic anaerobic conditions. Int. J. Green Energy 6,192-200, .
[27]. Qiao, W. et al. (2011) Evaluation of biogas production from different biomass wastes with/without hydrothermal pretreatment. Renew. Energy . 36(12), 3313-3318 doi:10.1016/j.renene.2011.05.002
[28]. Bouallagui, H. et al. (2004) Two-phases anaerobic digestion of fruit and vegetable wastes: Bioreactors performance. Biochem. Eng. J.. 21(2), 193-197 doi:10.1016/j.bej.2004.05.001
[29]. Imamoglu, E., Dalay, M. C. , Sukan, F. V. (2009)Influences of different stress media and high light intensities on accumulation of astaxanthin in the green alga Haematococcus pluvialis. N. Biotechnol. , 26(3-4), 199-204 doi:10.1016/j.nbt.2009.08.007